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For our KDP crystal orientation, various thermo-optic (TO) and relevant temperature-dependence param-
eters are defined, presented, and studied in the framework of a transverse and a longitudinal electro-optic
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1. Introduction
Thermo-optic (TO) and relevant temperature effects in
an intensity-modulation (IM) electro-optic (EO) system
may strongly affect the EO response of a crystal[1−3]. In
the entire EO-modulation system, these effects can be
examined via their influence on the position and thermal
stability of the operating point over the system’s char-
acteristic (transfer) curve[3]. Under these conditions, the
concept and the role of the applied optical and electrical
bias may be important[4].

We present a novel consideration of the EO and TO
effects which are made on the basis of the combined
opto-electrical (optical and electrical) bias and the cor-
responding thermal stability along the aforementioned
transfer curve. In this framework, our interest is fo-
cused on the TO behaviour of an EO modulator crys-
tal as it is expressed by the influence of temperature T
on the crystal’s optical or electro-optical quantities such
as the refractive indices, n0 and ne, the effective EO
coefficient r, the spontaneous birefringence ∆n(0), the
half-wave voltage Vπ , the optical phase retardation Γ,
and the intensity-modulation (IM) depth m of the entire
EO-modulation system. After stating the appropriate
definitions of the corresponding thermo-optic and tem-
perature coefficients, we derive and present useful origi-
nal equations connecting these parameters when either a
transverse or a longitudinal configuration is used in the
IM EO-modulation system. Then, we present investiga-
tions of these equations as regards the above parameters
in the determination of temperature coefficients for the
effective EO coefficient r, the half-wave voltage Vπ , and
the IM depth m.

Incited by the above, we make a modified Sènarmont

system to study experimentally the electro-optic and rel-
evant temperature effects in 45◦ X-cut and 45◦ Y -cut
KH2PO4 (or KDP) crystals of various configurations.
The above measurements are performed using accurate
and precise methods such as the frequency-doubling
EO-modulation (FDEOM) method and the modulation
depth (MDM) method[5,6]. Finally, these results are com-
pared with each other and another orientation of the
same crystal.

2. Experimental system and methods
The EO and TO measurements were performed by a

modified Sénarmont setup. Figure 1 shows the arrange-
ment of the optical and electronic components. The EO
crystal sample S is placed between a polarizer P and a
quarter-wave plate Q, the neutral axes of which are ori-
ented at 45◦ from the axes of the crystal and the polar-
izer. Behind the quarter-wave plate, a rotating analyzer

Fig. 1. Schematic diagram for measuring EO and TO param-
eters in the modified Sénarmont system.
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A is free to be positioned at any azimuthal angle β̂. The
electric field is applied to the sample by means of a volt-
age V . As a result, when a laser beam passes through
the system, it is transformed into an intensity-modulated
beam. This modulated beam is received by a photode-
tection system. The photodetection system consists of
a photodiode (PD) and its associated high-gain photo-
diode amplifier (PDAM) followed by a band-pass filter
(BPF). The output voltage of the entire photodetection
system is conveyed to an oscilloscope. For increasing and
improving the sensitivity of the method, we use a lock-in
amplifier. Finally, for TO measurements, a temperature
stage is designed and built to fit the optical setup.

In general, for systems of the above kind, the transfer
function of the transmitted laser light intensity I can be
expressed as I=f(ϕ̄), where ϕ̄ is a quantity called the
opto-electrical bias of the system and defined by[3]

ϕ̄ = Γ − 2β̂ . (1)

More precisely, for systems such as those shown in Fig.
1, the transfer function becomes[3,6]

T =
T0

2
(1 − sin ϕ̄) , (2)

where T0 is the transmission factor of the system.
In what follows, the crystal sample is assumed linearly

EO and therefore in the presence of an applied elec-
tric field E=V /d (where V is the applied voltage and
d the electrode spacing) to an EO crystal, the total bire-
fringence of the crystal can be expressed by the linear
approximation[6,7]

∆n = ∆n(0) −
1

2
n3rE = ∆n(0) −

n3r

2d
V , (3)

where ∆n(0) is the natural or spontaneous birefringence,
r represents the effective EO coefficient, and n is the
effective refractive index of the sample given by

n =

(

2n2
0n

2
e

n2
0 + n2

e

)1/2

. (4)

The corresponding total differential phase shift or rela-
tive refraction is given by[4,8−10]

Γ =

(

2πL

λ0

)

∆n , (5)

where L is the length of the crystal (along the laser beam)
and λ0 is the wavelength of the laser beam in vacuum.
For the field-induced optical phase retardation, the ex-
pression is

ΓE =

(

π

λ0

)

Ln3rE = π

(

V

Vπ

)

, (6)

where

Vπ =
λ0

n3r

(

d

L

)

(7)

is the half-wave voltage of the crystal sample for the
configuration under consideration.

Hence, in the case of a transverse EO modulator, the
half-wave voltage of the sample will be proportional to
the dimension ratio d/L. Accordingly, in the trans-
verse EO-modulation system under consideration, the
half-wave voltage of the sample could be considerably
reduced if d is taken significantly smaller than L and
moreover, it would be more or less affected by the ther-
mal expansion effects in the crystal. By contrast, for the
longitudinal configuration, we have L=d and therefore
the half-wave voltage of the crystal is independent on its
dimensions, and their thermal expansions depends only
on the thermo-optic effects modifying the refractive in-
dex and the EO coefficient of the crystal.

When a system such as the one shown in Fig. 1 is
used for either a transverse or a longitudinal IM electro-
optic modulation, the I-ϕ̄ curve representing the transfer
function according to Eq. (2) can be taken as the char-
acteristic curve of the system (Fig. 2).

As can be seen from Eqs. (1)−(6), the position of the
quiescent point on this characteristic curve is controlled
by the opto-electrical bias ϕ̄ and can be established by ad-

justing either the azimuthal angle β̂ of the analyzer (op-
tical bias) or/and the applied electric direct current (DC)
voltage V =VDC (electrical bias) which controls the static
retardation Γ̄ = Γ(0) + ΓDC, where Γ(0) = (2πL/λ)∆n(0)

is the natural phase retardation and ΓDC = π(VDC/Vπ)
is the DC-bias phase retardation. According to Eq. (1),
the total opto-electrical bias will be given by

ϕ̄ = Γ − 2β̂ = Γ(0) + π (VDC/Vπ) − 2β̂ . (8)

It is known that one of the more important quies-
cent points along the I-ϕ̄ characteristic curve is the
minimum-transmission point, M0, for which the deriva-
tive of f(ϕ̄) is zero. On the assumption of validity of
Eq. (2), along with Eq. (8), it is easily proven that
this point corresponds to a total opto-electrical bias
(ϕ̄ = ϕ0 = (1/2 + 2k)π (k = 0, ±1, · · ·) and is attained

when the condition Γ(0) + (VDC/Vπ − 1/2−k)π = β̂
is met. This point is also called the double-frequency
point, because if an alternating current (AC) field of
frequency ν is applied to the crystal, a clear signal mod-
ulated at a frequency of 2ν appears at the demodulated
output[5,6]. The double-frequency point can be used
to measure the half-wave voltage Vπ and the effective
EO coefficient r by means of a FDEOM method us-
ing the system in Fig. 1[5,6]. The double frequency

Fig. 2. Optical transmission of the system as a function of

the analyzer angle β̂ or the applied voltage V .
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signal is lost as a step of a DC electric field applied to the
crystal and can be recovered if the analyzer is rotated by
an angle given by

∆β̂ =
∆Γ̄

2
=

(

πL

2λ

)

n3r∆E. (9)

Another important quiescent point is the middle point
M1 corresponding to the mid-point intensity I=I0/2 of
the transfer function (Fig. 2). This point is also called
the maximum-linearity point, because if an AC field of
frequency ν is applied to the crystal, a clear signal mod-
ulated at the same frequency ν appears at the demodu-
lated output[5]. On the assumption of Eq. (2), along
with Eq. (8), it is easily proven that the maximum-
linearity point corresponds to a total opto-electrical bias
ϕ̄ = ϕ1 = kπ (k = 0, ±1, · · ·) and is attained when the
condition Γ(0) + (VDC/Vπ)π = 2β is met. The so-called
linear working point M1 can be used to determine the
EO coefficient as a function of frequency by means of
modulation-depth method (MDM)[5]. Measuring the
peak-to-peak amplitude ipp of the modulated signal at
the point M1, one can obtain the EO coefficient directly
from[5,11]

r (ν) =

(

λd

π n3LVm

)

ipp

I0
, (10)

where Vm is the amplitude of the AC field and I0 =
Imax−Imin represents the total intensity shift of the trans-
fer function. In Eq. (10), the dimensionless ratio ipp/I0

is commonly noted as m and called the IM depth.

3. Relationships between TO parameters of EO
interest

In an EO-modulation system, various TO parameters
exist which refer to the temperature dependence of use-
ful quantities interconnected in the framework of the sys-
tem. To define these parameters, we have adopted the
definition of p=du/dT for the TO coefficient and

q =

(

1

u

) (

du

dT

)

, (11)

for the corresponding temperature coefficient of a tem-
perature quantity u[3]. On the other hand, as Γ depends
on various EO and TO parameters, the thermal stability

of the opto-electrical bias ϕ̄ = Γ− 2β̂ will depend on the
values of these parameters.

For the case of the typical Sénarmont-type transverse
EO-modulation system, it has been proven that the fol-
lowing set of equations is valid for the EO and TO pa-
rameters for any operating point of the system[3]

n1n2 (β2 − β1) = n̄∆n(0) (µ∆ − µ) , (12a)

κ =
dΓ

dT
= Γ(0) (µ∆ + αL) − πδ

(

VDC

Vπ

)

, (12b)

ρ =
1

r

(

dr

dT

)

= − (δ + 3β) + (αd − αL) , (12c)

ξm =
1

m

(

dm

dT

)

= (ρ + 3β) − (αd − αL) , (12d)

where ρ, δ, µ∆, and ξm are the temperature coefficients
for the effective EO coefficient r, the half-wave volt-
age Vπ , the spontaneous birefringence ∆n(0), and the IM
depth m, respectively. For example, we defined the fol-
lowing coefficients:

δ =
1

Vπ

(

dVπ

dT

)

,

µ∆ =
1

∆n(0)

(

d∆n(0)

dT

)

,

ξm =
1

m

(

dm

dT

)

= −δ , (13)

where dVπ/dT , d∆n(0)/dT , and dm/dT are the thermo-
optic coefficients for Vπ , ∆n(0), and m, respectively. As
to the temperature coefficients αL and αd for the crystal
length L and the crystal thickness d, respectively, they
are given by

αL =
1

L

(

dL

dT

)

,

αd =
1

d

(

dd

dT

)

, (14)

where dL/dT and dd/dT are the thermal expansion
coefficients of the crystal along the directions L and d,
respectively. Also, the temperature coefficients of the
refractive indices n, n1=n0, and n2=ne, are defined by

β =
1

n

(

dn

dT

)

,

β1 = β0 =
1

n0

(

dn0

dT

)

,

β2 = βe =
1

ne

(

dne

dT

)

, (15)

where dn/dT , dn0/dT , and dne/dT represent the cor-
responding thermo-optic coefficients. Also, β = β0 and
β=βe stand for r63 and r41 EO coefficients, respectively.
Lastly, n̄ = (1/2)(n1 + n2) is the mean refractive index
and κ represents the thermo-optic coefficient dΓ/dT of
the static phase retardation Γ̄.

Similar calculations made in the case of a Sènarmont-
type longitudinal EO-modulation system are shown as
Eqs. (12a) and (12b), which refer to the difference
(β2−β1) and the thermo-optic coefficient κ of Γ̄, re-
spectively, and are the same in the both transverse
and longitudinal EO systems. By contrast, Eqs. (12c)
and (12d), which refer to the temperature coefficients ρ
and ξm, respectively, differ in these two opto-geometric
configurations by the thermal expansion term (αd−αL).
According to Eq. (7), it can be proven (see Appendix A)
that the temperature coefficient ρ is ruled by the formula

ρ =
1

r

(

dr

dT

)

= − (δ + 3γ) , (16)

where γ is the coefficient (see Appendix B) ruled by

γ =
β0n

2
e + βen

2
0

n2
0 + n2

e

. (17)
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Table 1. Description of the Electro-Optical
Configuration Used in Our Experiments

on KDP Crystals

Symmetry-EO
Tensor

EO
Coefficient

Transverse
Configuration

Longitudinal
Configuration

4̄2m























0 0 0

0 0 0

0 0 0

r41 0 0

0 r52 0

0 0 r63























r63 E//Z and K//Y -

r41 E//X and K//Y E//X and K//X

From Eq. (16) and the third line of Eq. (13), the tem-
perature coefficient ξm will be given by

ξm =
1

m

(

dm

dT

)

= ρ + 3γ. (18)

It is to be emphasized that, as seen from the above
sets of equations, Eqs. (12c) and (16), which refer to
the temperature coefficient ρ, and Eqs. (12d) and (18),
which refer to the temperature coefficient ξm, differ by
the thermal expansion term (αd−αL), which is absent in
a longitudinal EO-modulation system. This fact may be
advantageous for such a longitudinal system if the ther-
mal expansion contribution is high in the corresponding
transverse EO-modulation system.

4. Experimental results
The measurements are performed on the KDP crys-

tal grown with the water solution by slow evaporation
technique. We adopt three sample cuts to explore two
different configurations. The first and second cuts are
4×10×4 (mm) 45◦ Y -cut and 5×10×4 (mm) Y -cut KDP
crystals for the transverse EO coefficients r63 and r41,
respectively. The third one is 10×5×4 (mm) 45◦ X-cut
KDP crystal involving the longitudinal EO coefficient
r41. For each sample, the dimension along the laser
beam propagation is 10 mm. Table 1 summarizes the
configurations (directions of the light propagation and
the applied electric field and EO coefficient involved)
that are studied.

Electro-optical and thermo-optical measurements were
carried out using a 15-mW He-Ne laser (λ=633 nm)
with 1-kHz AC voltage up to 300-V peak to peak and
a DC voltage with amplitude varying between −300 and
300 V.

4.1 Electro-optical measurements
We firstly determined the quantities r63, r41, and

Vπ using the FDEOM method with the transverse
configuration. Figure 3, for transverse configuration,

describes the frequency-doubling azimuthal angle β̂ of
the analyzer as a function of the DC voltage VDC. To
reduce the effect of random errors, the data was fitted
by linear least-squares, which led to straight lines. Using
the slopes δβ/δVDC of the above curves in Eq. (9), we
determined the EO coefficients r63 and r41, respectively.
So, for r63, we obtained the static DC value of r63=11.4
pm/V and the half-wave voltage Vπ of 6.47 kV. Also,
we found the static EO coefficient r41 and the half-wave
voltage Vπ with values equal to 8.67 pm/V and 9.24 kV,

Fig. 3. Frequency-doubling analyzer angle β̂ (involving the
transverse configuration) induced by a DC applied voltage
VDC for (a) r63 configuration and (b) r41 configuration.

Fig. 4. Temperature dependence of the static phase retarda-
tion Γ̄ for two different DC voltages for (a) r63 transverse
configuration and (b) r41 transverse configuration.

respectively.

4.2 Thermo-optical measurements
Thermo-optical measurements are important when one

uses these crystals orientation in an EO modulation sys-
tem. So, the optical system in Fig. 1 was upgraded
to allow for varying temperature among the crystals
measured. An accurate and precise feedback controlled
heater was used and the temperature was monitored with
a digital thermometer with ±0.05 ◦C accuracy.

First, to investigate the TO behaviour of our ori-
entation 45◦ Y -cut KDP crystal with the transverse
configuration, by means of the FDEOM method, we
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plotted the phase retardation Γ̄ as a function of tem-
perature T for two different DC voltages of VDC=0 and
VDC=300 V in Fig. 4. The continuous curves in this
figure represent the graphical plots of the linear least-
square, which fit to the experimentally obtained data
points.

Next, it was important to define the thermal stabil-
ity of the spontaneous birefringence ∆n(0) of the crys-
tal expressed by the TO coefficient d∆n(0)/dT in used
configuration and then, using Fig. 4, we determined the
temperature coefficient µ∆. For this purpose, we firstly
extracted the TO coefficient κ = dΓ̄/dT or the slopes
of the straight lines on the voltages from Fig. 4. As
expected, the κ − VDC curves are straight lines. After
applying the linear least-squares fitting on the values
of κ, we determined the interception of the curves with
values equal to −54.59 deg./◦C and 108.26 deg./◦C for
r63 and r41 configurations, respectively. Second, us-
ing the value of Γ(0) as described above and the value
of thermal expansion αL

[12] in Eq. (12b), we found
the temperature coefficients µ∆=−243.015×10−6 ◦C−1

Fig. 5. Temperature dependence of the static phase retarda-
tion Γ̄ at VDC=0 for the longitudinal configuration involving
the EO coefficient r41.

Fig. 6. Temperature dependences of the transverse EO
coefficient r and the IM depth m for (a) r63 configuration
and (b) r41 configuration.

and −479.43×10−6 ◦C−1 for r63 and r41 configurations,
respectively. Then, using the second of line Eq. (13)
with ∆n(0)=ne−n0=−0.04[13], we determined the TO
coefficients d∆n(0)/dT of the r63 and r41 configurations,
respectively, which were equal to 9.72×10−6 ◦C−1 and
19.17×10−6 ◦C−1.

In the case of the longitudinal configuration, we
recorded the dependence of the phase retardation Γ̄
on the temperature T in r41 configuration at VDC=0.
Typical results obtained in 45◦ X-cut KDP crystal are
shown in Fig. 5. A least-square fitting of the data to a
straight line reveals a good linearity leading to a slope
dΓ(0)/dT=127.41 deg./◦C and a TO coefficient accord-
ing to d∆n(0)/dT=22×10−6 ◦C−1. Then, using the sec-
ond line of Eq. (13), we determined the temperature
coefficient µ∆ of −550×10−6 ◦C−1 for r41 longitudinal
configuration.

Figure 6 shows, by means of Eq. (10), the temperature
dependence of the r63 and r41 transverse EO coefficients
obtained via the MDM method. These curves exhibit
small temperature dependent oscillations of r63 and r41

around the mean values of r63 and r41, respectively.
From the central line of the curves, by means of a linear
least-squares fit to the so-obtained data, it can be found
that the coefficients r63 and r41 equal to 11.8 pm/V and
8.72 pm/V, respectively. Also, from the slopes in Fig.
6, we extracted the TO coefficients dr63/dT =2.1×10−3

pm/(V·◦C) and dr41/dT =12.31×10−3 pm/(V·◦C). Us-
ing these results in the first line of Eq. (12c), we de-
termined for r63 and r41, the temperature coefficients of
ρ=0.177×10−3 ◦C−1 and ρ=1.414×10−3 ◦C−1, respec-
tively.

To evaluate the TO behavior of KDP crystal when
used as a modulator crystal in a typical IM system, it
is useful to find the temperature dependence of the IM
depth m. Precisely, by applying the MDM method and
the results of r-T curves presented in Fig. 6 and then,
using Eq. (10), we determined the m-T curves in Fig.
6. From the linear-fit straight line, a modulation depth
of m=3.5% and 3.41% and a thermo-optic coefficient
dm/dT=6.23×10−6 ◦C−1 and 48.14×10−6 ◦C−1 can be
obtained for transverse configurations r63 and r41, re-
spectively. Using these values in the third line of Eq.
(13), the temperature coefficients ξm=0.177×10−3 ◦C−1

and 1.407×10−3 ◦C−1, respectively, for r63 and r41

configurations, can be extracted. According to Eq.
(12d) and the values of ξm for configurations r63 and
r41, respectively, we found the temperature coefficients
of δ=−0.177×10−3 ◦C−1 and −1.407×10−3 ◦C−1.

Also, by using Eq. (10), we determined the tempera-
ture dependence of the r41 longitudinal EO configuration
with the MDM method. The results are shown in Fig.
7. From this figure, we also see the small temperature
dependent undulations of r41 around the mean value of
r41. A least-square fit to these values of r41 leads to
straight line described in this Figure. From this line, we
extracted an EO coefficient r41 =8.36 pm/V and from
its slope, a thermo-optic coefficient equal to 12.97×10−3

pm/(V·◦C). Then, using these values in the first line of
Eq. (16), we found the temperature coefficient for r41 of
ρ= 1.548×10−3 ◦C−1.

In addition, for longitudinal configuration, we present
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Fig. 7. Temperature dependences of the EO coefficient r41

and the IM depth m for the longitudinal configuration.

the temperature dependence of the IM depth m deduced
from the r41-T curve. Using Eq. (10), the so-obtained
results are illustrated in Fig. 7. After applying a linear
least-square fit to the values of m, we can find from
this line the modulation depth of m=1.76% and the
corresponding TO coefficient of dm/dT =27.51×10−6

◦C−1. Using these values in the third line of Eq. (13),
a temperature coefficient ξm=1.563×10−3 ◦C−1 can be
extracted for IM depth m. Consequently, according to
Eq. (18), a temperature coefficient δ for Vπ is found to
be −1.563×10−3 ◦C−1.

The temperature coefficients β0 and βe of the ordi-
nary and extraordinary refractive indices n0 and ne,
respectively, for r63 and r41 transverse configurations,
are calculated. Using Eq. (12c) or (12d) and the val-
ues of ρ, ξm, and δ presented in above and the thermal
expansions αL and αd reported in Ref. [12], the val-
ues of β0 and βe are found equal to 2.6×10−6 ◦C−1

for r63 configuration and 0.45×10−6 ◦C−1 for r41

configuration, respectively, while the correspond-
ing TO coefficient dn0/dT and dne/dT can be ob-
tained to be 3.92×10−6 ◦C−1 and 0.66×10−6 ◦C−1

for r63 and r41 configurations, respectively. Also,
from the equations dne/dT=dn0/dT+d∆n(0)/dT and
dn0/dT=dne/dT−d∆n(0)/dT , we extract the TO
coefficients dne/dT and dn0/dT of ne and n0, which
are equal to 13.64×10−6 ◦C−1 and −18.5×10−6 ◦C−1

for r63 and r41 configurations, respectively. From these
values in Eq. (15), the temperature coefficients βe and
β0, for r63 and r41 configurations, are found equal to
9.28×10−6 ◦C−1 and −12.27×10−6 ◦C−1, respectively.
Then, by means of Eq. (12a) with n1=n0 and n2=ne, the
differences µ∆ − µ̄ between the temperature coefficients
of the birefringence ∆n(0) and the mean refractive index
n̄, for r63 and r41 configurations, are obtained to be
−0.248×10−3 ◦C−1 and −0.473×10−3, respectively.

In the longitudinal configuration, using Eq.
(18), the coefficient γ is found to be (1/3)(ξm −
ρ)=5×10−6 ◦C−1. So, from the expression of birefrin-
gence ∆n(0)=ne−n0 and Eq. (15), the temperature
coefficient can be obtained to be β0 = [γ(n2

0 + n2
e) −

(n2
0/ne)(d∆n(0)/dT )]/(n3

0+n3
e/ne)=−2.663×10−6 ◦C−1;

hence, the corresponding TO coefficient will be
dn0/dT=β0n0=−4.015×10−6 ◦C−1. Then, the TO
coefficient of ne can be calculated from the for-
mula dne/dT=d∆n(0)/dT+dn0/dT=17.984×10−6◦C−1;
hence, the corresponding temperature coefficient will
be βe=(1/ne)(dne/dT )=12.257×10−6 ◦C−1. In addi-
tion, from Eq. (12a), the coefficient ∆µ can be cal-

culated to be ∆µ = µ∆ − µ̄ = (n0ne/n̄∆n(0))(βe −
β0)=−0.554×10−3 ◦C−1.

5. Discussion and investigation
The results obtained for transverse and longitudinal

configurations are summarized in Table 2. For trans-
verse configuration, we measured the EO coefficients
r63=11.4 pm/V and 11.8 pm/V and r41=8.67 pm/V and
8.72 pm/V, respectively, by a modified Sènarmont sys-
tem using two methods, namely the FDEOM and MDM
methods. Hence, we notice that these coefficients are
very close to one another (within experimental errors)
and similar to the results reported in Ref. [14]. Ob-
viously, this fact constitutes comparative evidence that
our system is correct and effective. But, for longitudi-
nal configuration, using the MDM method, we find that
the EO coefficient r41 are in good concordance with the
value reported in Ref. [14].

Additional evidence of the system under consideration
comes from its ability to detect the undulation in the
temperature dependence curves, r-T , of Figs. 6 and 7.
Such as a small undulation of EO coefficients is due to
the interactions of the crystal’s thermal expansion with
multiple beam interference and TO effects[16,17].

To evaluate the thermal instability of spontaneous bire-
fringence for our crystal orientation, which is expressed
by the coefficient of thermal variation or TO coefficient
d∆n(0)/dT , it is useful to compare it with those of an
other orientation (45◦ Z-cut KDP)[18]. This crystal
orientation is chosen as a reference for comparison, par-
ticularly in EO systems. We adopt and insert in Table 2
for the coefficient d∆n(0)/dT of this crystal orientation
the value 15×10−6 ◦C−1 of Ref. [18]. But, for our KDP
crystal we find this coefficient equal to 9.72×10−6 ◦C−1,
which is in good agreement with the results obtained in
Ref. [19]. This is smaller than the corresponding value
of other crystal orientation (45◦ Z-cut). That means our
results show a more powerful temperature control which
would be possibly required for 45◦ Z-cut KDP crystal.

From the results of calculations that leads to Figs.
6 and 7, it can be deduced that the values of r, m,
and the forms of the corresponding temperature depen-
dences show small oscillations of EO coefficients, r63 and
r41, and modulation depth m around the mean value of
them. Indeed, our crystal orientation is nearly insen-
sitive to the temperature. For the sake of comparison,
from the straight line fitted to the experimental data in
the r63-T diagram of Ref. [18], we extract different
temperature and TO coefficients. The so-obtained
coefficients are shown in Table 2. From this table, it
is deduced that the TO parameters in our results are
smaller than that of other crystal orientation. Moreover,
in our crystal the thermal instability of the IM depth in
the r63 configuration, as expressed by the temperature
coefficient ξm, proves to be much lower than other crys-
tal orientation, and therefore no specific thermal control
is indispensable.

In investigation, we firstly dealt with the difference
µ∆ − µ̄ between the temperature coefficients of the bire-
fringence ∆n(0) and the mean refractive index n̄, which
are ruled by Eq. (12a). It is again to be emphasized that,
irrespective of the chosen EO-modulation configuration
(transverse and longitudinal) these parameters are nearly
the same.
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Table 2. EO and TO Parameters Measured in Our KDP Crystal Orientation and Extracted from Literature
of Other Orientations of the Same Crystal (45◦ Z-cut KDP)

Parameters

Transverse Configuration
Longitudinal Configuration

Our Orientation
Measured Values

Values from
Literatures

Other Orientations
from Literatures

Our Orientation
Measured Values

r (pm/V)
r63 11.4, 11.8 11 [14] 11.8[18] -

r41 8.67, 8.72 8[14], 8.6[15] - 8.36

d∆n(0)/dT (◦C−1)
r63 9.72 × 10−6 11×10−6[19] 15 × 10−6[18] -

r41 19.17 × 10−6 - - 22 × 10−6

dr/dT (pm/V ◦C)
r63 2.10× 10−3 - 0.08[18] -

r41 12.31× 10−3 - - 12.97 × 10−3

µ∆ (◦C−1)
r63 −243.01 × 10−6 - −375 × 10−6[18] -

r41 −479.43 × 10−6 - - −550 × 10−6

ρ (◦C−1)
r63 0.177 × 10−3 - 6.7 × 10−3[18] -

r41 1.414 × 10−3 - - 1.548 × 10−3

ξm (◦C−1)
r63 0.177 × 10−3 - 6.8 × 10−3[18] -

r41 1.407 × 10−3 - - 1.563 × 10−3

∆µ (◦C−1)
r63 −0.248 × 10−3 - −0.41 × 10−3[18] -

r41 −0.473 × 10−3 - - −0.554 × 10−3

Moreover, from Eqs. (12a), (12d), (16), and (18), we
can deduce that ρtrans < ρlong and ξm,trans < ξm,long,
which means that the transverse EO-modulation sys-
tem is better than its homologous longitudinal EO-
modulation system.

6. Summary and conclusion
The first part of the present work is dedicated to intro-

ducing and analyzing the concept of opto-electrical bias
ϕ̄ in an EO-modulation system. Next, we deal with cor-
responding questions of thermal instability, as expressed
by various TO or temperature-dependence parameters.
It is thus proven that the choice of a transverse or a
longitudinal configuration in the system may more or
less affect the above parameters and modify the thermal
stability of the EO crystal and the entire system as well.
In addition, we derive a number of basic equations with
which one can investigate the effect of temperature on
the TO and other temperature-dependence parameters
in both transverse and longitudinal EO-modulation sys-
tems. A comparison between these two configurations
as regards the TO behaviour of the EO crystal and the
entire system is also discussed.

Finally, it is concluded with a discussion about the ac-
curacy and reliability of the obtained result on r, and its
temperature dependence, along with comments on the
comparison of the present cut KDP crystal (involving
the r63 transverse configuration) with other orientations
such as 45◦ Z-cut KDP crystal. For this comparison, a
TO coefficient d∆n(0)/dT of spontaneous birefringence
is found to be smaller in our crystal orientation than its
Z-cut KDP-counterpart[18]. By contrast, it is ascertained
that at the output of the entire EO-modulation system
in the case of our crystal orientation, the IM depth
m will possess a temperature coefficient ξm and a TO
coefficient dm/dT much lower (∼50 times) than in the
case of a Z-cut KDP crystal. In conclusion, our results

provide a highly improved thermal stability to the sys-
tem’s IM depth, which is in a fact of primary importance.
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Appendix A: Effect of temperature on the EO

coefficient r
By derivation of Eq. (7), we have
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=

d
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Formula (A.1) can be written as

ρ =
1

r

dr

dT
= −

3

n

dn

dT
−

1

Vπ

dVπ

dT
, (A.2)

where β=(1/n)(dn/dT )=γ, n = (2n2
0n

2
e/(n2

0 + n2
e))

1/2,
and δ=(1/Vπ)(dVπ/dT ). Formula (A.2) can be written
as

ρ = − (δ + 3γ) . (A.3)

Appendix B: Equation for the coefficient γ
Using Eq. (4), we obtain
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Formula (B.1) can be given by

β =
1

n

dn

dT
=

n2
0βe + n2

eβ0

n2
0 + n2

e

= γ, (B.2)

where β0=(1/n0)(dn0/dT ) and βe=(1/ne)(dne/dT ).


